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Abstract— Direction-of-arrival (DOA) estimation techniques 
that are based on grids depend on the solution of a challenging 
group-sparse optimization problem involving the l2,0 pseudo-
norm. In this paper, we demonstrate that by substituting a group 
minimax concave penalty with appropriate parameters for the 
l2,0 term, an exact relaxation of this issue may be obtained. 
Compared to the initial l2,0-regularized criteria, this relaxation 
is continuous and accepts fewer local (rather than global) 
minimizers, making it more accessible to non-convex 
optimization techniques. Then, using numerical simulations, we 
demonstrate that using an iteratively reweighted l2,1 strategy to 
minimize the suggested relaxation improves performance over 
conventional methods. 

Index Terms—l2,0-norm minimization, DOA, exact relaxations, 

MMV-sparse optimization. 

 

I. INTRODUCTION 

IRECTION-OF-ARRIVAL (DOA) estimation is of funda- 
mental importance in array signal processing. It refers to 

the process of retrieving the incident angles of signals reaching 
an antenna array. Conventional estimation techniques [1] include 
beamforming methods such as Bartlett or Capon’s [2] beam- 
formers, subspace methods like the MUSIC [3] or ESPRIT [4] 
algorithms, as well as maximum likelihood approaches [5]. 
Because subspace methods exploit the statistical properties of 
the observations, accurate DOA estimation is only made possible 
at the price of a large number of snapshots and sufficiently 
uncorrelated sources. Maximum likelihood approaches are, for 
their part, very sensitive to initialization. 

During the last decade, these limitations have been overcome 
with the advent of sparse optimization. Many innovative DOA 
estimation approaches have been proposed in this context. They 
come in many flavors: on-grid, off-grid, or gridless, according 

 
 

to the strategy adopted to deal with the non-linearity of the 
DOA model [6]. On-grid methods make the assumption that 
the incident angles belong to a prescribed grid. DOA estima- 
tion is then transformed into a challenging linear group-sparse 
optimization problem involving the l2,0 pseudo norm that can 

be tackled through l2,1 (or group-LASSO) relaxation [7]–[9], 

l2,q relaxation (0 ≤ q < 1) [10], [11], smoothed l2,0-norm ap- 
proximation [12], [13], or greedy methods [14], [15]. Although 
still relying on a grid, off-grid methods do not constraint esti- 
mated DOAs to be on that grid [16], [17]. This mitigates the 
grid mismatch problem [18] at the price of the introduction 
of an auxiliary variable to the sparse optimization problem. 
Finally, gridless approaches work directly in the continuous 
domain [19]–[22], thus avoiding the grid mismatch problem. 
However, they may be computationally intensive as they rely on 
the resolution of a semi-definite program. For more details on 
sparse-based methods for DOA estimation, we refer the reader 
to the comprehensive reviews [6], [23]. 

Contributions. We show that the challenging group-sparse 
optimization problem that defines on-grid DOA estimation 
methods can be exactly relaxed by replacing the l2,0 term by 
a group minimax concave penalty (group-MCP) [24]. More 
precisely, we prove that for a suitable choice of the group-MCP 
parameters the relaxation preserves the global minimizers of 
the l2,0 penalized least-squares criteria while removing some 
of its local minimizers (Theorem 2). Moreover, we propose a 
new dimensionality reduction technique to decrease the compu- 
tational burden of the estimation when the number of snapshots 
is larger than the number of antennas (Proposition 1). Finally, 
we deploy an iteratively reweighted l2,1 algorithm to minimize 
the proposed relaxation and compare its performance against 
previously proposed on-grid methods. 

Notations: We use the notation IN = 1 , . . . ,N  . For a 

matrix S C
M×N

 and a set of indices c IN , Sω  C
N
 

denotes the restriction of S to its rows indexed by c while 

S·ω ∈ C
M

 stands for its column counterpart. The Frobenius 
norm is denoted   F. The indicator function of the subset Ω 

is defined by 1 
 

{x∈Ω} := {1 if x ∈ Ω, 0 otherwise}. u ⊗ v ∈ 
 C

M×N
 stands for the tensor product between u ∈ C

M
 and 

v ∈ C
N
 . Finally, x̄ denotes the conjugate of x ∈ C and A

H
 

the conjugate transpose of A ∈ C
M×N

 . 

 

II. GROUP-SPARSE FORMULATION OF DOA ESTIMATION 

The general equation that describes an antenna array is 

Y = A(θ̄ )S + N, (1) 

where S C
K×L

 is a matrix formed out of the L samples of 

the K incident signals, Y C
M×L

 is the observation matrix 
containing the L snapshots of the M antennas outputs, and 
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N ∈ C
M×L

 is an additive zero mean Gaussian noise with vari- 1) For each local minimizer X̂ ∈ C
N×M

  of F0, Ẑ = 
2 
noise 

defined by 
. The non-linear operator A : [0, 2π)

K
 → C

M×K
 is 

 

A(θ̄) = (a(θ¯1) a(θ¯2) ··· a(θ¯K )), (2) 

X̂ DV
H
 C

N×L
 is a local minimizer of J and J (Ẑ)  =  

F0(X̂ ). 
2) There is a one-to-one mapping between strict local mini- 

mizers (including global minimizers) of J and F0. 
where θ̄ = (θ¯1 ··· θ¯K )

T
 ∈ [0, 2π)

K
 is the vector of incident Proof: Let X̂ ∈ C

N×M
 be a local minimizer of F0 and denote 

angles. The steering vectors (a(θ¯
k))

K
  depend on the geometry by c ⊆ IN its support. Then, from [27, Lemma 2.4]

1
 we have 

of the antenna array. Then, given Y, DOA estimation amounts 

to retrieve the number of signals K and their incident angles θ̄ .  
This is a challenging non-linear inverse problem. 

(A
H
 A ·ω )X̂ 

ω· = A
H
 YVD

T
 (7) 

=⇒ (A
H
 A · ω )X̂ 

ω·DV
H
 = A

H
 Y, (8) 

By considering a set of predefined possible DOA angles 
θ = (θ1  θN )

T
  [0, 2π)

N
 (N  K), we obtain a linearized 

version of model (1) as 

·ω 

=⇒  (A
H
 A·ω 

 

)(X̂ DV
H
 )ω· 

·ω 

= A
H
 Y, (9) 

·ω 

Y ≈ AZ + N, (3) 

where Z ∈ C
N×L

  is a row sparse matrix with K  

showing that Ẑ = X̂ DV
H
 is a local minimizer of J. To ob- 

tain (8), we used the fact that V is unitary and that, by def- 
inition of V and D, YVD

T
D = YV. Then, one can see 

N nonzero rows. Here, the matrix A = A(θ) =  from (7)–(9) that X̂ and Ẑ have the same row-support and 

(a(θ1) a(θ2) ·· · a(θN )) ∈ C
M×N

 is formed out of the thus that X̂ 
2,0 = Ẑ 2,0. Finally, we obtain the equality 

candidate steering vectors (a(θn))
N
  . It follows that the  ̂  ̂

n=1 
nonzero rows of Z (i.e., its support) encode the incident angles 

J(Z) = F0(X) by combining the previous arguments with the 
equality   2 =  · DV

H
  

2
 . 

θ̄ up to the fineness of the grid (θn)
N
 . Hence, with (3), DOA 

F
 

F
 

n=1 

estimation is converted into a group-sparse estimation problem 
also referred to as multiple measurement vectors (MMV) sparse 
estimation problem. 

A natural measure of the row-sparsity of a matrix Z is given 
by the mixed l2,0 pseudo norm [10], [12] 

The second assertion of the proposition comes from the fact 
that A ω is full rank [27, Theorem 3.2] for strict local minimizers. 
This implies that the systems in (7)–(9) have a unique solution. 
Finally, the fact that global minimizers of J and F0 are strict [27, 

Theorem 4.4] completes the proof. □ 
From Proposition 1, we get that we can easily obtain a local 

Z  2,0 =   Z 
n∈IN 

n·  2 |0, (4) 
minimizer of J from one of F0 (first assertion). And more 
importantly, that any global minimizer of J can be reached from 
global minimizers of F0 (second assertion). In this respect, the 

where z 0 = 0 if z = 0 1 otherwise and Zn denotes the nth 
row of Z. Then, DOA estimation can be addressed through the 
following (l2-l2,0) optimization problem 

two problems are equivalent. 

 

IV.  EXACT CONTINUOUS RELAXATION OF F0 

We consider the following relaxation
2
 of F0 in (6) 

Ẑ arg  min 
Z∈CN ×L 

J(Z) := 
2 

AZ − Y  
2
 + λ  Z  2,0, (5) 

F˜(X) = 
1

 
2 AX − YVD

T
  

2
 + 

Σ 
φ(γn , λ; Xn·  2 ),  (10) 

where λ > 0 balances between data-fidelity and sparsity. This 
problem is nonconvex, noncontinuous, and NP hard due to 
its combinatorial nature. Yet, the single measurement vector 
(SMV) case (i.e., L = 1) has been widely studied, driven by 

n∈IN 

where γn > 0 for n IN , and φ(γ, λ; ) : R 0 R is the min- 
imax concave penalty (MCP) [28] defined, for x > 0, by 

the compressed sensing paradigm. Naturally, many of these ap- 
proaches have been extended to the MMV setting, such as those 

 1 
φ(γ, λ; x) = λ − 

2γ
 
 

x − 
√

2λγ
 2 

1 
√

2λγ} . (11) 

mentioned in the introduction. Such extensions are essential as 
the resolution of MMV problems leads to an improvement in 
the size of the recoverable support [25]. 

 

III. DIMENSIONALITY REDUCTION 

The computational cost of the algorithms deployed to mini- 
mize J in (5) grows with the size of the problem (i.e., N L). 
It is thus of practical interest to reduce this size. Inspired by the 
l1-SVD method [7], [26], we show in Proposition 1 that, when 

M < L, minimizing J : C
N×L

 → R is equivalent to minimiz- 

ing F0 : C
N×M

 → R defined by 

It is a piecewise quadratic function (see Fig. 1) that satisfies 
φ(γ, λ; x)  λ x 0 with equality for x  0  [ 2λγ, +  ). 
The complete penalty term in (10) is known as group-MCP [24]. 
The rationale behind this choice is that, in the SMV case, it has 
been shown in [29], [30] that minimizing F0 in (6) is equivalent 

to minimizing F˜ in (10) for a suitable choice of the parameters 

γn. Not only F˜ admits the same global minimizers as F0, but 

some local (not global) minimizers of F0 are removed by F˜ [31]. 
We extend this result to the MMV setting in Theorem 2 (proof 
in Supplementary Material). 

Theorem 2: Let L0 (resp., L˜) be the set local minimizers of 
1 

F0(X) = 
2 

AX − YVD T  
2
 + λ  X  2,0. (6) 

F0 (resp., F˜). Let G0 ⊆ L0 (resp. G  ̃⊆ L̃ )  be the corresponding 

where V comes from the singular value decomposition of Y 1One can easily extend Lemma 2.4, Theorem 3.2, and Theorem 4.4 of [27] 

(Y = UΣV
H
) and D = [IM , 0M ×(L−M ) ]. This shows that the 

(used in the proof of Proposition 1) to the MMV setting. 
2It is noteworthy to mention that, as both J and F0 are l2-l2,0 functionals, all 

dimension of (5) can be reduced from (N L) to (N M ). 
Proposition 1: Let M < L and F0 be defined by (6). Then 

the developments that we are doing for F0 can be transposed to J when L < M  
(i.e., when the dimensionality reduction is not relevant). 

ance ς 

{x≤ 
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Algorithm 1: 

Require: X
0
 C

N×M
 

1: X
1
 IRL1(F˜; X

0
) 

2: k = 1  
3: while X

k
 ∈/ L0 do 

4: Select n ∈ IN such that X
k
 

 
 
 

 
2 ∈ (0, 

 
 
 

 
   2λγn) 

5: Find α∈{0, 
√

2λγn} 
n 

minimizing 

F˜(X
k
 +αe 

\n 

Xk  

)
 

 k 

Fig. 1. Graph of l0 and MCP for λ = 1 and g = 2. 6: X
k+1

 IRL1(F˜; X
k
 

\n 
+ αe  Xn·  ) 

X̂ 
n· 2 

subset of global minimizers. Then, if γn < 1/  A·n  
2
 for all 

7: k = k +1  
  8: end while  

n ∈ IN , we have, 

L˜ ⊆ L0 and G˜ = G0. (12) 

When (12) is satisfied, we say that the continuous relaxation 

 

algorithm [33] generates a sequence (X
k
)k∈N as 

X
k+1

∈ arg min AX − YVD
T
  

2
 + w

k
  X   , 

is exact. From Theorem 2, the proposed continuous relaxation F˜ 

is exact as soon as γn < 1/  A·n  
2

. If the columns of the matrix 

X  2 
F
 n 

n∈IN 

n· 2 

(16) 

A are normalized, this condition becomes γn < 1. 2 where w
k
 = w(γn, λ; X

k
  2). Each sub-problem (16) is a 

Remark 1: The closer γn gets to the bound 1/  A·n  2, the n n· 

more F˜ is likely to eliminate local (not global) minimizers of 

F0. Indeed, one gets from Lemma 5 (Supplementary Material) 

that X ∈ L˜ implies, ∀n ∈ IN , Xn  2 ∈ {0} ∪ [
√

2λγn, +∞). 
Hence, if X ∈ L0 is such that  Xn· 2 ∈ (0,  2λγn) for some 

weighted l2,1-norm minimization problem which can be solved 
using FISTA [34]. The convergence of the sequence generated 
by IRL1 to a critical point of the objective is proven in [33] when 
the objective verifies the Kurdyka-Lojasiewicz (KL) inequality. 
It is the case for F˜ as X '→  AX − YVD

T
  

2
 is a polynomial 

n ∈ IN , then X ∈/ L˜. This shows that increasing γn can elimi- 
F 

function and φ(γ, λ; ·) has a piecewise polynomial graph, which 
nate more local minimizers of F0. 

Remark 2: For the limit case γn = 1/  A n  
2

, a similar result 
can be obtained, but the analysis is a bit more involved. Yet, 
such a result has been derived in [32] when L = 1, leading to 
the continuous exact l0 (CEL0) relaxation. 

V.  MINIMIZING THE RELAXATION F˜ 

The continuity of F˜ allows us to deploy nonsmooth noncon- 

vex optimization algorithms for its minimization that cannot be 
used directly with F . 

are sufficient ingredients to conclude [35]. 

 

B. Ensuring the Convergence to Local Minimizers of F0 

The IRL1 algorithm only ensures the convergence to a critical 

point of F˜ while Theorem 2 provides a relation between (local) 

minimizers of F˜ and F0. It is thus of interest to complete the 

result of Theorem 2 with an analysis of the critical points of F˜. 

Lemma 3: Let γn < 1/  A·n  
2
 for all n IN and X̂ 

C
N×M

 be a critical point of F˜. 

0 

1) If, ∀n ∈ IN ,  X̂ n· 2 
∈ {0}∪ [

√
2λγn 

, +∞), then X̂ is 

A. Iteratively Reweighted l2,1 
We consider the iteratively reweighted l algorithm (IRL1). 

a local minimizer of F0 (i.e., X ∈ L0).  
 

2) Otherwise, ∀n ∈ IN√ such that X̂ 
n· 2 ∈ (0,  2λγn), 

2,1 

It proceeds by minimizing a series of convex majorizations of the 
objective which are equal to it at the current point. To minimize 

F˜, we follow [33]. Because φ(γ, λ; ·) is concave on R≥0, it is 
majored by its tangents (or half-tangent at 0). At x̃ ∈ R≥0, the 

(half) tangent of φ(γ, λ; ·) is 

t(x) = w(γ, λ; x̃ ) (x − x̃) + φ(γ, λ; x̃ ) ,  (13) 

where the expression of the slope is 

there exists α ∈ {0,  2λγn} such that 

F˜
 

X̂ 
\n + αen ⊗ X̂ n·/  X̂ n·  2

 
< F̃ ( X̂  ), (17) 

where X̂ 
n = X̂ en X̂ n . 

From the first statement of Lemma 3, one can easily check 

whether a critical point of the relaxation F˜ is a local minimizer 
of the initial functional F0. Moreover, if this is not the case, 

one can easily obtain a new point that decreases F˜ (second statement of Lemma 3). This suggests to deploy the strategy 

w(γ, λ; x̃ )  =

 √
2λ/γ − x̃ /γ  if x̃ < 

√
2λγ, (14) described in Algorithm 1 where IRL1(F˜; X) stands for the 

minimization of F˜ using IRL1 initialized by X. From Lemma 3, 

Given X̃ C
N×M

 , we can thus define a majorant of the penalty 
term in (10) as 

the convergence of this scheme can be obtained in the same way 
as [32, Theorem 5.1]. The main difference being that√the 1D 
restriction at line 5 is linear (with nonzero slope) on [0,  2λγn] 

Q(Z) = w(γn, λ; 

n∈IN 

X̃ n·  2)  Zn·  2. (15) 
whereas its counterpart in [32] is constant (making α = 0 always 

a valid choice for non-increasing F˜). 
Remark 3: To fully exploit the result provided by Theorem 2 

Note that Q in (15) is defined up to a constant (i.e., ignoring the terms that are constant with respect to x in (13)). Then, the IRL1 

√ 
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an algorithm that ensures the convergence to a local minimizer 

of F˜ has to be defined. In the absence of such an algorithm, 
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Algorithm 1 is an interesting alternative. It ensures to reach a 

critical point of F˜ which is also a local minimizer of F0. 

 

VI.  NUMERICAL EXPERIMENT 

A. Description of the Experiment 

We consider an uniformly linear array (ULA) geometry com- 
posed of M = 8 omnidirectional elements spaced by half the 
electromagnetic wavelength. Given an incident angle θ, the 
corresponding steering vector a(θ) is 

a(θ) = (1 ejπ sin θ ej2π sin θ · · · ej(M −1)π sin θ )T . (18) 

We simulate K = 2 correlated narrowband signals with planar 

wave fronts and incident angles θ¯1 = 10◦ and θ¯2 = 20◦. The 
correlation coefficient is fixed to 0.99. The measurements are 
corrupted with Gaussian noise so that to reach a specified 
signal-to-noise ratio (SNR). Finally, we define the group-sparse 
estimation problem (Section II) by slicing the possible range of 

incident angles from θmin =  90◦ to θmax = +89◦ in steps of 
1◦ (i.e., N = 180). 

To assess the performance of the proposed method (i.e., mini- 

mization of the exact continuous relaxation F˜ using Algorithm 1 
with X

0
 = 0), we compute the exact support recovery rate for 

the two following scenarios 
. number of snapshots varying from L = 100 to L = 2 with 

 

  
 

 

  
 

  

 
Fig. 2. Support recovery rate as a function of the number of snapshots L for 
SNR = 10 dB (top), and as a function of SNR for L = 50 (bottom). 

a SNR fixed to 10 dB, 
noise levels varying from SNR = 30 dB to SNR =  10 dB 
with the number of snapshots fixed to L = 50. 

For each couple (L, SNR) we perform 200 independent real- 
izations of noise in order to determine the support recovery rate. 
We consider that the estimation is successful when the estimated 
X̂ has only two non-zero rows that correspond to the two incident 

angles θ¯1 = 10◦ and θ¯2 = 20◦. 
Following Remark 1, we set γn = 0.99/  A n  

2
 in (10). Then, 

the selection of the regularization parameter λ is made so that 
to maximize the recovery rate while keeping the same value for 
all the 200 realizations. 

For comparison, we consider the minimization of the l2,1 
convex relaxation of F0 using FISTA [34], as well as the JLZA- 
DOA

3
 algorithm [12]. The latter is designed to minimize F0 

using a graduated non-convexity approach based on a smoothed 
l2,0-norm approximation. All these methods benefit from the 
dimensionality reduction presented in Section III and we adopt 
the same strategy to select the parameter λ. 

 

B. Discussion 
In terms of support recovery, we can observe from Fig. 2 

that the minimization of the suggested exact relaxation F˜ 
performs better than both JLZA-DOA and the l2,1 convex 
relaxation. Furthermore, we discovered that for the same value 
of λ, a direct reduction of F0 using a proximal gradient 
approach [35] is unable to reliably recover the support over 
the various noise realizations. Therefore, the associated curves 
are not reported by us. 

The normalized power spectra produced by the three 
techniques for two noise realizations with L = 40 and SNR = 
10 dB are shown on Fig. 3. It is evident that spurious DOAs 
near the actual ones are detected by both JLZA-DOA and the 
minimization of the l2,1 convex relaxation. Nevertheless, to 
the right 

 

3We tuned the parameters of JLZA-DOA and found that, for our experiment, 

the best ones were ρ = 0.78, η = 0.1, ς0 = 0.005, and g = 0.5. 

. 
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Fig. 3. Normalized power spectra for two realizations of noise with L = 40 
and SNR = 10 dB (zoom between 0◦ and 30◦). The true DOAs are θ¯1 = 
10◦ and θ¯2 = 20◦. 

 
 

 

plot, recovering the two proper DOAs would require a post-

processing step that isolates local maxima; the identical 

computation on the left plot would yield incorrect DOAs. On 

the other hand, the suggested method offers a two-sparse 

solution that retrieves the actual DOAs. 

We include the power spectra from the MUSIC algorithm, 

which is unable to resolve the two sources using just L = 40 

pictures, for completeness. This illustrates the complexity of the 

case under consideration, which includes closely spaced sources 

falling within the 3 dB primary beamforming lobe, few 

antennas, and strongly correlated sources. 
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